IDNLearner.com, sua fonte de respostas comunitárias e confiáveis. Pergunte qualquer coisa e receba respostas informadas e detalhadas de nossa comunidade de profissionais especializados.

Tentei muitas vezes fazer mas, não consegui resolver, a pergunta é o seguinte: Usando a aproximação cos25º= 9/10, determinar o valor de sen25º e a tg25º



Sagot :

 

 

Se cos25º= 9/10

 

Temos:

                cateto adjacente = c.a = 9

                hipotenusa = h = 10

 

                 (cateto oposto = c.o)^2 = 10^2 - 9^2

                                                 = 100 - 81 = 19

                  c.o = raiz de 19

 

sen 25 = c.o / h

                              sen 25 = raiz de 19 / 10

 

tag 25 = c.o / c.a

                             tag 25 = raiz de 19 / 9

Tem outro jeito de fazer também. Só lembrar da regra:

 

[tex]sen(x)^2 + cos(x)^2 = 1[/tex]

 

Portanto o seno será:

 

[tex]sen(25^o)^2 + (\frac{9}{10})^2 = 1 \\ sen(25^o) = \sqrt{1 - \frac{81}{100}} \\ sen(25^o) = \sqrt{\frac{19}{100}} \\ sen(25^o) = \frac{\sqrt{19}}{10}[/tex]

 

e a tangente:

[tex]tg(x) = \frac{sen(x)}{cos(x)}[/tex]

 

[tex]tg(25^o) = \frac{\frac{\sqrt{19}}{10}}{\frac{9}{10}} \\ tg(25^o) = (\frac{\sqrt{19}}{10})({\frac{10}{9}) [/tex]

[tex]tg(25^o) = \frac{\sqrt{19}}{9}[/tex]

Sua presença em nossa comunidade é crucial. Continue fazendo perguntas e fornecendo respostas. Juntos, podemos construir uma comunidade vibrante e enriquecedora. Encontre respostas claras no IDNLearner.com. Obrigado pela visita e volte para mais soluções confiáveis.