IDNLearner.com, onde especialistas respondem às suas dúvidas. Pergunte qualquer coisa e receba respostas completas e precisas de nossa comunidade de profissionais especializados.

 O M.D.C. de dois números determinado pelo Algoritmo de Euclides é 27. Se os 4 quocientes encontrados são distintos e os 
menores possíveis, determi-ne o menor desses dois números.



Sagot :

Pelo algoritmo de Euclides tu fazes divisões sucessivas afim de encontrar o mdc; o mdc de dois números é o resto deixado pela última divisão que não deixa resto zero. Por exemplo, o mdc de 18 e 8 pode ser encontrado assim:
18 = 8.2 + 2 (essa é uma forma compacta e extremamente econômica de se escrever divisões; o dividendo do lado esquerdo da igualdade, o resto num multiplica ninguém e o quociente e divisor estão juntos, tu identifica qual é qual)
8 = 4.2 (o divisor dessa divisão é o resto da divisão anterior)
Como essa divisão foi exata tu tem que o mdc é 2, o último resto diferente de zero.
Indo para o nosso problema...

Chamando os dois números que se quer descobrir de x e y temos (também podia ser y>x, a ordem das letras não vai influenciar nada):

x>y => x=qy+r
y>r => y = q'r + r'
r>r' => r = q''r' + r''
r'>r'' => r' = q'''r'' + r''' (*)

Foi dito na questão de quatro quocientes, então paramos nas quatro divisões. Também é dito que o mdc é 27, portanto r''' = 0 e r'' = 27. Por fim é dito que os quocientes são os menores possíveis e distintos, logo [tex]q'''=2, q''=3, q'=1 e q=4[/tex] (se q'''=1 tu teria que r'=r'', o que fura o que foi dito em *). Resolvendo essas coisas de baixo pra cima temos:

[tex]r'=q'''r''+r''' => r'=2.27+0 => r'=54[/tex]
[tex]r=q''r'+r'' => r=3.54+27 => r=189[/tex]
[tex]y=q'r+r' => y=1.189+54 => y=243[/tex]
[tex]x=qy+r => x=4.243+189 => x=1161[/tex] (só por curiosidade)

Como quer o menor dos dois números a resposta é y=243