IDNLearner.com, seu recurso essencial para respostas de especialistas. Pergunte qualquer coisa e receba respostas informadas e detalhadas de nossa comunidade de profissionais especializados em diversas disciplinas.
Sagot :
Para resolvermos, sempre temos que olhar a sequência:
[tex]\boxed{...(n+3) \cdot (n+2) \cdot (n+1) \cdot n \cdot (n-1) \cdot (n-2) \cdot (n-3)...} \\\\ \longrightarrow[/tex]
Sempre partindo da esquerda para a direita:
a) [tex]\frac{(n+2)!}{(n+1)!} \\\\ \frac{(n+2) \cdot \not{(n+1)}!}{\not{(n+1})!} \\\\ \boxed{(n+2)}[/tex]
b) [tex]\frac{(n-3)!}{(n-2)!} \\\\ \frac{\not{(n-3)}!}{(n-2) \cdot \not{(n-3)}!} \\\\ \boxed{\frac{1}{n-2}}[/tex]
c) [tex]\frac{(n+1)! + n!}{n!} \\\\ \frac{(n+1) \cdot n! + n!}{n!} \\\\ \text{colocamos n! em evidencia} \\\\ \frac{\not{n!} [(n+1) +1]}{\not{n!}} \\\\ n+1+1 \\\\ \boxed{n+2}[/tex]
[tex]\boxed{...(n+3) \cdot (n+2) \cdot (n+1) \cdot n \cdot (n-1) \cdot (n-2) \cdot (n-3)...} \\\\ \longrightarrow[/tex]
Sempre partindo da esquerda para a direita:
a) [tex]\frac{(n+2)!}{(n+1)!} \\\\ \frac{(n+2) \cdot \not{(n+1)}!}{\not{(n+1})!} \\\\ \boxed{(n+2)}[/tex]
b) [tex]\frac{(n-3)!}{(n-2)!} \\\\ \frac{\not{(n-3)}!}{(n-2) \cdot \not{(n-3)}!} \\\\ \boxed{\frac{1}{n-2}}[/tex]
c) [tex]\frac{(n+1)! + n!}{n!} \\\\ \frac{(n+1) \cdot n! + n!}{n!} \\\\ \text{colocamos n! em evidencia} \\\\ \frac{\not{n!} [(n+1) +1]}{\not{n!}} \\\\ n+1+1 \\\\ \boxed{n+2}[/tex]
Valorizamos muito sua participação. Não se esqueça de voltar para fazer mais perguntas e compartilhar seus conhecimentos. Juntos, podemos enriquecer nosso entendimento coletivo. Suas perguntas encontram respostas no IDNLearner.com. Obrigado pela visita e volte para mais soluções precisas e confiáveis.