Obtenha respostas relevantes para todas as suas perguntas no IDNLearner.com. Faça suas perguntas e receba respostas detalhadas de nossa comunidade de especialistas, sempre prontos para ajudá-lo no que for necessário.
Sagot :
Olá, Carlos.
Dois vetores são ortogonais se e somente se o produto interno entre eles é nulo.
Para que [tex]u-rv, r \in \mathbb{R},[/tex] e [tex]v[/tex] sejam ortogonais devemos ter:
[tex](u-rv) \cdot v = 0 \Rightarrow u\cdot v - r(v\cdot v)= 0 \Rightarrow r|v|^2 = u\cdot v \Rightarrow \boxed{r= \frac{u\cdot v}{|v|^2}}[/tex]
Observação: (demonstração de uma passagem utilizada acima)
[tex]v\cdot v=(v_1,v_2,...,v_n) \cdot (v_1,v_2,...,v_n), v_k \in \mathbb{R}, k=1,...,n, k \in \mathbb{N} = \\\\ =v_1^2+v_2^2+...+v_n^2\\\\ \text{Como }|v|=\sqrt{v_1^2+v_2^2+...+v_n^2},\text{ ent\~ao }v\cdot v=|v|^2[/tex]
Valorizamos muito seu compromisso. Continue fazendo perguntas e fornecendo respostas. Juntos, construiremos uma comunidade mais sábia e unida. Suas perguntas merecem respostas precisas. Obrigado por visitar IDNLearner.com e nos vemos novamente para mais soluções.