Explore o IDNLearner.com para encontrar respostas confiáveis. Obtenha respostas rápidas e precisas para suas perguntas graças aos nossos especialistas, sempre prontos para ajudá-lo.

O ouro é misturado com outros metais para aumentar sua dureza e fabricar joias.
(a) Considere um pedaço de uma joia de ouro que pese 9,85 g e tenha um volume de 0,675 cm3. A joia contém apenas ouro e prata, cujas densidades são 19,3 g/cm3 e 10,5 g/cm3, respectivamente. Supondo que o volume total da joia é a soma dos volumes de ouro e prata que ela contém, calcule a porcentagem de ouro (em massa) na joia.
(b) A quantidade relativa de ouro em uma liga é geralmente expressa em unidades de quilates. O ouro puro tem 24 quilates, e a porcentagem de ouro na liga é dada como uma porcentagem desse valor. Por

exemplo, uma liga com 50% de ouro tem 12 quilates. Dê a pureza da joia de ouro em quilates.​


Sagot :

Resposta:

a) P= 46,5%

b) Q= 11,16 K

Explicação:

Dados

mAu= 9,85 g

VAu= 0,675 cm³

δAu= 19,3 g/cm³

δAg= 10,5 g/cm³

Vt= VAu + VAg

P=?

Q= ?

- lembre que a densidade da liga é a média ponderada entre as densidades dos componentes e das massas;

δ= (δ1m1 + δ2m2) ÷ (m1 + m2)

a)

[tex]\frac{9,85}{0,675} =\frac{19,3mAu+10,5(9,85-mAu)}{9,85} \\ \\ 14,59=\frac{19,3mAu+103,425-10,5mAu}{9,85} \\ \\ 143,71=8,8mAu+103,425\\ \\ mAu= \frac{143,71-103,425}{8,8} \\ \\ mAu= 4,58 g\\ \\ PAu=\frac{4,58}{9,85} *100\\ \\ PAu= 46,5[/tex]

b) Regra de três

50% Au ----- 12 K

46,5%Au ---- Q

Q= 12 K * 46,5% ÷ 50%

Q= 11,16 K